Another Way of Conceptualising Division:

Figure 1: The Division Operator.

Introduction:

What follows is a discussion of Quotative Division.

Body:

We want an implicit understanding of the operation of Division.
Let us take the equation:

$$
8 \div 4=2
$$

and let us examine what is happening, conceptually, when this operation is being worked out. Let us imagine our dividend:

8

as a Universal Set containing 8 elements:

Figure 2: A Universal Set containing the dividend number of elements. A Universal Set containing 8 elements. The set $\{a, b, c, d, e, f, g, h\}$.

I have 8 elements, the dividend, and I want a quotient number of sets that will contain 4 elements, the divisor, apiece. How many sets do I need?

Figure 3: We have a dividend quantity of elements, and we wish to disperse this dividend quantity of elements, evenly, such that we arrive at a divisor quantity of elements in each set. The quantity of sets that it takes to do this is the quotient. In the above-depicted example, we have 8 , the dividend, elements; we wish to disperse these 8 elements, evenly, such that we obtain 4 , the divisor, elements in each set. The number of sets that it takes to achieve this even dispersal, i.e. 2, is the quotient.

The number of sets that I need to disperse 8, the dividend, number of elements, evenly, such that I obtain 4, the divisor, elements in each set is:

Therefore:
2
is the quotient. If we were doing "Sums" in primary school, then:
would be "the answer."

We take the set:

$$
\{a, b, c, d, e, f, g, h\}
$$

and we disperse these 8 , the dividend, elements, such that each set contains 4 , the divisor, elements:

$$
\{a, b, c, d\}\{e, f, g, h\}
$$

We are left with 2 , the quotient, number of sets.

